Overexpression of TFAM or Twinkle Increases mtDNA Copy Number and Facilitates Cardioprotection Associated with Limited Mitochondrial Oxidative Stress
نویسندگان
چکیده
BACKGROUND Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF. METHODS AND RESULTS Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice. CONCLUSIONS The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.
منابع مشابه
High mitochondrial DNA copy number has detrimental effects in mice.
Mitochondrial DNA (mtDNA) is an essential multicopy genome, compacted into protein-DNA clusters called nucleoids. Maintaining an adequate mtDNA copy number is crucial for cellular viability. Loss of mtDNA results in severe human syndromes, whereas increased mtDNA copy number has been suggested to improve survival from myocardial infarction in mice and to be a promising therapeutic strategy for ...
متن کاملTwinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis.
Cardiac rupture is a fatal complication after myocardial infarction (MI). However, the detailed mechanism underlying cardiac rupture after MI remains to be fully elucidated. In this study, we investigated the role of mitochondrial DNA (mtDNA) and mitochondria in the pathophysiology of cardiac rupture by analyzing Twinkle helicase overexpression mice (TW mice). Twinkle overexpression increased m...
متن کاملOverexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction.
BACKGROUND Mitochondrial DNA (mtDNA) copy number is decreased not only in mtDNA-mutation diseases but also in a wide variety of acquired degenerative and ischemic diseases. Mitochondrial transcription factor A (TFAM) is essential for mtDNA transcription and replication. Myocardial mtDNA copy number and TFAM expression both decreased in cardiac failure. However, the functional significance of TF...
متن کاملMitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy.
Oxidative stress-induced mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in peripheral neurons is considered to be important in the development of diabetic neuropathy. Mitochondrial transcription factor A (TFAM) wraps mtDNA and promotes mtDNA replication and transcription. We studied whether overexpression of TFAM reverses experimental peripheral diabetic neuropathy using TFAM tr...
متن کاملOxidative stress and mitochondrial DNA damage in heart failure.
Recent experimental and clinical studies have suggested that oxidative stress is enhanced in heart failure. The production of oxygen radicals is increased in the failing heart while antioxidant enzyme activities are preserved. Mitochondrial electron transport is an enzymatic source of oxygen radical generation and also a target against oxidant-induced damage in the failing myocardium. Chronic i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015